
10. OPTIMIZATION AND DESIGN 

Abstract — This paper aims to provide an improved 

NSGA-II (Non-Dominated Sorting Genetic Algorithm) which 

incorporates a parameter-free self-tuning approach by 

reinforcement learning technique, called Non-Dominated 

Sorting Genetic Algorithm Based on Reinforcement Learning 

(NSGA-RL). The proposed method is particularly compared 

with the classical NSGA-II when applied to a satellite coverage 

problem. Furthermore, the optimization results are compared 

with other results in the with others multiobjective 

optimization methods. 

I. INTRODUCTION 

The study of satellite broad-cast communication had 

been done in several works, [1],[3],[4]. Basically, the main 

objective of this class of problem is to reach a maximum 

gain and illumination uniformity inside a prescribed region 

[1],[4]. 

In this paper, for the optimization task of satellite 

broad-cast communication, two multiobjective optimization 

techniques based on genetic algorithms are validated. The 

techniques are: (i) classical Non-Dominated Sorting 

Genetic Algorithm (NSGA-II), proposed in [3], and (ii) a 

new improved NSGA-II called Learner Non-Dominated 

Sorting Genetic Algorithm Based on Reinforcement 

Learning (NSGA-RL). 

The classical NSGA-II uses an elitist selection through 

its domination sort algorithm and, also uses a parameter-

free diversity metric denominated crowding distance. On 

the other hand, the proposed NSGA-RL is a parameter-free 

bio-inspired algorithm based on the classical one proposed 

in [2]. However, it is based on reinforcement learning 

techniques to self-tuning its probabilities and indices. 

The rest of this paper is organized as follows: In Section 

II, the basis of satellite coverage problem is presented. In 

sections III and IV, the optimization procedure of the 

classical NSGA-II and NSGA-RL are detailed, respectively. 

Finally, the achieved numerical results by NSGA-II and 

NSGA-RL are compared in Section V with others results in 

the recent literature. To finish, Section VI discusses the 

results and possible advances. 

II. THE OPTIMIZATION PROBLEM DEFINITION 

The complete mathematical model of the satellite 

coverage problem is well described and discussed in 

[1],[3],[4], and it will be omitted here. Shortly, it could be 

stated that an antenna in geosynchronous orbit must 

illuminate a target on the planet surface as follows: the 

maximum gain and illumination uniformity inside a given 

region should be, as close as possible, reached [4]. These 

two objectives are evaluated using only one objective 

function, which is considered in three different frequencies, 

[1], instead of one as in [3], and subject to a minimum at 

some sub region [4]. This formulation is stated in equation 

(1), as proposed in [4], where some control points � are 

spread over the target region �, � ∈ � and � is the gain 

radiation (dBi). 
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The problem has 38 design variables, which came from 

the 25 control points in Bernstein-Bézier surfaces, which 

defines the reflector shape. The other variables are linked to 

the feed position and rotation parameterization [4]. 

III. CLASSICAL NSGA-II 

The NSGA-II was built as its classical structure as 

proposed in [2]. The crossover operator method is the 

simulated binary crossover (SBX), as shown in [6]. On the 

other hand, the mutation is performed by the polynomial 

mutation method stated also in [6]. These methods require 2 

parameters called distribution indexes, which define the 

spread of the created solutions. In this work, these indices 

were set as 40. Besides, crossover and mutation occurrence 

probability are 0.9 and 0.03 (per gene), respectively. The 

tournament section method is obtained throughout the 

matting pool technique, and the function evaluation by the 

same Matlab scripts used in [4] and available in [5].  

IV. THE REINFORCEMENT LEARNING SELF-ADAPTATION 

APPROACH FOR THE NSGA-II 

It is widely known that the quality of the Pareto 

frontier reached by a meta-heuristic, like NSGA-II, is 

highly dependent on its parameter set. This statement is 

proved by the No Free-Lunch Theorem [7]. Therefore, the 

self-adaptive features are studied in the modern papers of 

nature-inspired optimization algorithm field. The NSGA-

RL is one of them, based on a greedy classic reinforcement 

learning technique.  

The main idea in NSGA-RL is to incorporate learning 

features and, consequently, knowledge to the population. 

Thus, based on the past generations, it is possible to make 

some decisions concerning the variation of the crossover 

and mutation. The knowledge is stored based on the 

domination rank elitism structure. For each new generated 
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offspring, the population is feedback with a reward, which 

is straight related to the success of this crossover and 

mutation operation.  

In this way, the population learns, by try and error 

procedure, which is the best values for parameters, whether 

exist ones, to adapt themselves for non-stationary problems. 

These parameters are the crossover and mutation 

probabilities and indexes as defined in Section III. For each 

parameter, a tridimensional matrix is then built. The matrix 

indexes are defined by the parents' rank and a set of discrete 

values of the parameter. The matrix is then filled with the 

sum of the past rewards after the parameter application.  

Then, for a given couple of parents, their ranks and 

related rewards, allows us to define the best value for the 

concerning parameter. The NSGA-RL uses a simple greedy 

selection reinforcement learning technique [8] with 

maximum/minimum saturation structure. Then, when one 

parameter has more rewards than any other it is selected, 

otherwise, when a draw occurs, the selection is done 

randomly among the greatest ones. 

V. OPTIMIZATION RESULTS 

The objective function and its constraints (the gain 

should be greater than 35dBi in each control point in a 

given region), shown by (1), were optimized by NSGA-II 

and NSGA-RL. Table I shows some results for both 

methods and for the multiobjective Immune Systems (IS) 

and Particle Swarm Optimization (PSO) algorithms for 10 

simulations. The IS and PSO results were extracted from 

[4] and every metric was performed with 10 runs. Table I 

gives a straight comparison tool to determine the 

effectiveness of the NSGA-II and NSGA-RL approaches. 

TABLE I 

COMPARISON OF RESULTS FOR SEVERAL APPROACHES WITH 10 RUNS.  

IS AND PSO EXTRACTED FROM [4] 

Approach 
Brazil China USA 

Mean Best Mean Best Mean Best 

NSGA-II 

Penalty 

29.88 

± 0.53 
30.35 

31.53  

± 0.27 
31.78 

31.80 

± 0.25 
32.26 

NSGA-RL 

Penalty 

30.06 

± 0.29 
30.34 

31.42  

± 0.35 
31.76 

31.84 

± 0.32 
32.30 

IS 

Penalty 

29.9  

± 0.3 
30.34 

32.0  

± 0.2 
32.17 

32.8  

± 0.1 
32.95 

PSO 

Penalty  

28.8  

± 0.7 
29.54 

31.2  

± 0.8 
31.93 

31.9  

± 0.8 
32.96 

 

In Table II the classic NSGA-II is compared with the 

NSGA-RL approach with 30 runs to guarantee a statistical 

relevance. Besides, for both NSGA-II and NSGA-RL, the 

number of individuals was set to 100. NSGA-II ran for 300 

generations, while for NSGA-RL only for 200 had been 

chosen. Unfortunately, in [4], it was not found in how well 

the minimum of 35dBi were satisfied. It is so important to 

comment that obeying these constraints implies in a straight 

minimization in the mean gain. For both the NSGA-II and 

NSGA-RL these constraints were well satisfied, what had a 

great effect in the best solution mean gain. In all cases, the 

constraints were dealt as penalty functions.  

Besides, the 30 run comparison between the NSGA-II 

and the NSGA-RL showed that this self-adaptive approach 

has a good performance, when compared with the NSGA-

II. In  this problem, we realize that the constraints play a 

very important role. We have observed that the gain are 

always greater than, or at least equal to 35dBi in each 

control point in a given region, for all countries. The worst 

case is a control point in Brazil: 35.002 dBi.  

TABLE II 

COMPARISON OF RESULTS AFTER 30 RUNS 

Approach 
Brazil China USA 

Mean Best Mean Best Mean Best 

NSGA-II 

Penalty 

29.90 

± 0.47 
30.43 

31.42  

± 0.37 
31.81 

31.79 

± 0.22 
32.26 

NSGA-RL 

Penalty 

30.0  

± 0.28 
30.38 

31.47 

 ± 0.26 
31.78 

31.87 

± 0.38 
32.32 

 

When we analyze the computational time, the NSGA-

RL, due to its adaptive nature, is, as expected, slower than 

the NSGA-II. From our experience, the NSGA-RL time 

computation could be twice the NSGA-II time, for some 

analytical benchmarks. Nevertheless, when solving the 

optimization of antennas satellite, the function evaluation 

takes around 99.6% of the total time cost for both methods, 

so the NSGA-RL adaptive process is well suited to this 

class of problem. 

VI. CONCLUSION 

As could be seen the parameter-free variation of the 

classical NSGA-II performed well in relations to others 

methods. Besides, the NSGA-RL was better in many 

aspects whether compared with NSGA-II and with the 

advantage of non-parameter setting and a little number of 

generations run. As consequence fewer evaluations of 

objective functions and improved speed are obtained using 

the NSGA-RL. 

It is important to note that the NSGA-RL has a small 

standard deviation in the best solution, which can be used to 

say that it appears to be more robust than other methods, in 

other words, there in not a so big difference in the best 

solution between the runs. 
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